การแก้อสมการ
จากที่เพื่อนๆเคยเรียนผ่านกันมาเกี่ยวกับเรื่องการแก้สมการตัวแปรเดียว หรือว่าหลายตัวแปรนั้น มีความเกี่ยวเนื่องบางประการสำหรับการที่จะนำความรู้ของเรื่องสมการนั้นเพื่อนำมาใช้ในบทนี้
สำหรับหัวข้อนี้นั้น เราจะพูดถึงวิธีการแก้อสมการในรูปแบบต่างๆได้อย่างไร โดยที่คุณสัมบัติหลักที่ใช้มากในการแก้อสมการนั้น คือ คุณสมบัติการไม่เท่ากัน ได้แก่
1. คุณสมบัติการบวกด้วยจำนวนเท่ากัน
2. คุณสมบัติการลบด้วยจำนวนเท่ากัน
3. คุณสมบัติการคูณด้วยจำนวนจริงบวก
4. คุณสมบัติการคูณด้วยจำนวนจริงลบ
โดยการที่เราจะทำการแก้อสมการนั้น เราจะแยกตามประเภทของอสมการในแต่ละประเภทดังนี้คือ
การแก้อสมการกำลังหนึ่ง
อสมการกำลังหนึ่งนั้น เป็นอสมการที่มีตัวแปรยกกำลังหนึ่งเท่านั้น และสามารถที่จะจัดอสมการในรูปของ




โดยที่เราจะกำหนดให้


แบบฝึกหัด 6
1. 

2.


3.

4.

5.

การแก้อสมการกำลังสอง
หัวข้อที่แล้วเรากล่าวถึงสมการยกกำลังหนึ่ง ซึ่งสามารถแก้ปัญหาได้โดยง่าย เพราะจะยังไม่มีความซับซ้อนมากเท่าไหร่นัก ซึ่งจากแบบฝึกหัดที่พวกเราได้ทำกันไปแล้วนั้น จะช่วยให้เราสามารถเข้าใจ รับรู้ถึงเทคนิคหรือวิธีบางอย่างในการคำนวณได้ดีมากขึ้น
สำหรับในหัวข้อนี้ เป็นอีกหนึ่งวิธีสำหรับการแก้อสมการ แต่จะเพิ่มระดับความยุ่งยากขึ้นมามากกว่าเล็กน้อย นั่นคือ การแก้โจทย์ปัญหาอสมการกำลังสอง โดยที่การแก้อสมการประเภทนี้นั้น เราสามารถทำได้หลายวิธีด้วยกัน เช่น การแยกตัวประกอบ หรือ การแก้โจทย์โดยที่ใช้วิธีกำลังสองสมบูรณ์
การแก้อสมการกำลังสองนั้น มีนิยามที่แสดงได้อย่างง่ายๆคือ อสมการกำลังสอง ใน
หมายถึง อสมการที่อยู่ในรูปของ





โดยกำหนดให้
เป็นตัวแปร และ
เป็นค่าคงที่ ที่ 



ซึ่งอย่างที่บอกไปแล้วนั้นว่า วิธีการแก้อสมการกำลังสองนั้นมีวิธีได้หลายวิธี เรามาดูวิธีการแก้ปัญหาของแต่ละประเภทกันดีกว่านะคะ
1. การแก้สมการสมการกำลังสองโดยการแยกตัวประกอบ
และสิ่งที่จะเอ่ยดังต่อไปนี้ จะเป็นวิธีการแก้ปัญหาเกี่ยวกับอสมการอย่างง่ายๆ โดยที่เราจะสรุปเป็นข้อๆ เพื่อให้ง่ายต่อการเข้าใจมากขึ้นนะคะ โดยขั้นตอนในการแก้ปัญหานั้นมีขั้นตอนดังนี้
การแก้อสมการกำลัง 2
อ้างโดยนิยามที่กล่าวไปดังก่อนหน้านี้ เราสามารถที่จะแสดงวิธีในการแก้อสมการได้ดังนี้
1. จัดอสมการเปรียบเทียบกับ 0
2. แยกตัวประกอบ
3. พิจารณาเครื่องหมาย 

4. หาคำตอบจากสมการกำลัง 1 จากทั้ง 2 กรณีแล้วนำมายูเนี่ยนกัน ซึ่งพวกเราสามารถที่จะนำขั้นตอนดังกล่าวมาใช้ได้โดยที่จะสามารถแก้ปัญหาได้อย่างรวดเร็วและถูกต้อง เช่นตัวอย่างดังต่อไปนี้
ตัวอย่างที่ 1
จงหาเซตคำตอบของสมการ 

วิธีทำ 



ซึ่งเราจะต้องแบ่งเครื่องหมายในการพิจารณา โดยมีกรณีดังนี้
1. (+)(+) หรือ
2. (-)(-) หรือ
อีกกรณีหนึ่งที่มีเครื่องหมายต่างกัน เราสามารถที่จะแบ่งได้เป็นสองกรณีเช่นกัน แล้วสุดท้ายจะนำคำตอบที่ได้มายูเนี่ยนกัน
1.
และ
และ 




No comments:
Post a Comment